งานวิจัยการคำนวณจุดตรึงและการประยุกต์

งานวิจัยการคำนวณจุดตรึงและการประยุกต์
ทฤษฎีจุดตรึง (Fixed Point Theory) เป็นแขนงที่สำคัญแขนงหนึ่งในสาขาของการวิเคราะห์เชิงฟังก์ชัน (Functional Analysis ) ที่สามารถประยุกต์ได้อย่างกว้างขวางโดยเฉพาะอย่างยิ่งการศึกษาเกี่ยวกับ การมีคำตอบ (existence of solution) การมีเพียงคำตอบเดียว (uniqueness of solution) ของสมการต่างๆ ตลอดจนการคิดค้นระเบียบวิธีการทำซ้ำของจุดตรึง (Fixed-point Iterations) เพื่อใช้ในการหาคำตอบของสมการตัวดำเนินการไม่เชิงเส้น (nonlinear operator equations) ปัญหาอสมการคลาดเคลื่อน (variational inequality problem) ปัญหาดุลภาพ(Equilibrium Problems) ปัญหาที่ดีที่สุด (Optimizations problems) ปัญหาน้อยที่สุด (Minimizations Problems) ทั้งในปริภูมิฮิลเบิร์ตและปริภูมิบานาค ซึ่งปัญหาดังกล่าวเป็นปัญหาที่สำคัญที่มีประโยชน์มากมายในสาขาวิชาต่างๆ เช่น สาขาวิชาฟิสิกส์ คณิตศาสตร์ประยุกต์ วิศวกรรม และเศรษฐศาสตร์

Fixed Point Theory and Applications
Fixed point theory is an important offshoot field, a branch of the analysis function. Of equations as well as the invention of the fixed point method reproducing in order to find the solution of nonlinear operator equations. Deviation inequality problems balance problems to the problem. Minimal problems intersects both Hilbert and Banach spaces. The problem with such an important issue that has many benefits in various disciplines such as Physics, Engineering, Mathematics and Economics

Group Leader
Asst.Prof.Dr.Poom  Kumam

Reseaech FixedPoint


User Login Form